翻訳と辞書 |
Borel's lemma : ウィキペディア英語版 | Borel's lemma In mathematics, Borel's lemma, named after Émile Borel, is an important result used in the theory of asymptotic expansions and partial differential equations. ==Statement== Suppose ''U'' is an open set in the Euclidean space R''n'', and suppose that ''f''0, ''f''1 ... is a sequence of smooth functions on ''U''. If ''I'' is an any open interval in R containing 0 (possibly ''I'' = R), then there exists a smooth function ''F''(''t'', ''x'') defined on ''I''×''U'', such that : for ''k'' ≥ 0 and ''x'' in ''U''.
抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「Borel's lemma」の詳細全文を読む
スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース |
Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.
|
|